Welcome to Reflame’s documentation!¶
Reflame (REvolutionizing Functional Link Artificial neural networks by MEtaheuristic algorithms) is a Python library that implements a framework for training Functional Link Neural Network (FLNN) networks using Metaheuristic Algorithms. It provides a comparable alternative to the traditional FLNN network and is compatible with the Scikit-Learn library. With Reflame, you can perform searches and hyperparameter tuning using the functionalities provided by the Scikit-Learn library.
Free software: GNU General Public License (GPL) V3 license
Provided Estimator: FlnnRegressor, FlnnClassifier, MhaFlnnRegressor, MhaFlnnClassifier
Total Official Metaheuristic-based Flnn Regression: > 200 Models
Total Official Metaheuristic-based Flnn Classification: > 200 Models
Supported performance metrics: >= 67 (47 regressions and 20 classifications)
Supported objective functions (as fitness functions or loss functions): >= 67 (47 regressions and 20 classifications)
Documentation: https://reflame.readthedocs.io
Python versions: >= 3.8.x
Dependencies: numpy, scipy, scikit-learn, pandas, mealpy, permetrics, torch, skorch
Installation¶
Install the current PyPI release:
$ pip install reflame==1.0.1
Install directly from source code:
$ git clone https://github.com/thieu1995/reflame.git $ cd reflame $ python setup.py install
In case, you want to install the development version from Github:
$ pip install git+https://github.com/thieu1995/reflame
After installation, you can import Reflame as any other Python module:
$ python
>>> import reflame
>>> reflame.__version__
Examples¶
In this section, we will explore the usage of the Reflame model with the assistance of a dataset. While all the preprocessing steps mentioned below can be replicated using Scikit-Learn, we have implemented some utility functions to provide users with convenience and faster usage.
Combine Reflame library like a normal library with scikit-learn:
### Step 1: Importing the libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from reflame import FlnnRegressor, FlnnClassifier, MhaFlnnRegressor, MhaFlnnClassifier
#### Step 2: Reading the dataset
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
#### Step 3: Next, split dataset into train and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True, random_state=100)
#### Step 4: Feature Scaling
scaler_X = MinMaxScaler()
scaler_X.fit(X_train)
X_train = scaler_X.transform(X_train)
X_test = scaler_X.transform(X_test)
le_y = LabelEncoder() # This is for classification problem only
le_y.fit(y)
y_train = le_y.transform(y_train)
y_test = le_y.transform(y_test)
#### Step 5: Fitting FLNN-based model to the dataset
##### 5.1: Use standard FLNN model for regression problem
regressor = FlnnRegressor(expand_name="chebyshev", n_funcs=4, act_name="elu",
obj_name="MSE", max_epochs=100, batch_size=32, optimizer="SGD", verbose=True)
regressor.fit(X_train, y_train)
##### 5.2: Use standard FLNN model for classification problem
classifer = FlnnClassifier(expand_name="chebyshev", n_funcs=4, act_name="sigmoid",
obj_name="BCEL", max_epochs=100, batch_size=32, optimizer="SGD", verbose=True)
classifer.fit(X_train, y_train)
##### 5.3: Use Metaheuristic-based FLNN model for regression problem
print(MhaFlnnClassifier.SUPPORTED_OPTIMIZERS)
print(MhaFlnnClassifier.SUPPORTED_REG_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
model = MhaFlnnRegressor(expand_name="chebyshev", n_funcs=3, act_name="elu",
obj_name="RMSE", optimizer="BaseGA", optimizer_paras=opt_paras, verbose=True)
regressor.fit(X_train, y_train)
##### 5.4: Use Metaheuristic-based FLNN model for classification problem
print(MhaFlnnClassifier.SUPPORTED_OPTIMIZERS)
print(MhaFlnnClassifier.SUPPORTED_CLS_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
classifier = MhaFlnnClassifier(expand_name="chebyshev", n_funcs=4, act_name="sigmoid",
obj_name="NPV", optimizer="BaseGA", optimizer_paras=opt_paras, verbose=True)
classifier.fit(X_train, y_train)
#### Step 6: Predicting a new result
y_pred = regressor.predict(X_test)
y_pred_cls = classifier.predict(X_test)
y_pred_label = le_y.inverse_transform(y_pred_cls)
#### Step 7: Calculate metrics using score or scores functions.
print("Try my AS metric with score function")
print(regressor.score(X_test, y_test, method="AS"))
print("Try my multiple metrics with scores function")
print(classifier.scores(X_test, y_test, list_methods=["AS", "PS", "F1S", "CEL", "BSL"]))
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from reflame import MhaFlnnRegressor, MhaFlnnClassifier
#### Step 2: Reading the dataset
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
#### Step 3: Next, split dataset into train and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True, random_state=100)
#### Step 4: Feature Scaling
scaler_X = MinMaxScaler()
scaler_X.fit(X_train)
X_train = scaler_X.transform(X_train)
X_test = scaler_X.transform(X_test)
le_y = LabelEncoder() # This is for classification problem only
le_y.fit(y)
y_train = le_y.transform(y_train)
y_test = le_y.transform(y_test)
#### Step 5: Fitting FLNN-based model to the dataset
##### 5.1: Use standard FLNN model for regression problem
regressor = FlnnRegressor(hidden_size=10, act_name="relu")
regressor.fit(X_train, y_train)
##### 5.2: Use standard FLNN model for classification problem
classifer = FlnnClassifier(hidden_size=10, act_name="tanh")
classifer.fit(X_train, y_train)
##### 5.3: Use Metaheuristic-based FLNN model for regression problem
print(MhaFlnnClassifier.SUPPORTED_OPTIMIZERS)
print(MhaFlnnClassifier.SUPPORTED_REG_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
regressor = MhaFlnnRegressor(hidden_size=10, act_name="elu", obj_name="RMSE", optimizer="BaseGA", optimizer_paras=opt_paras)
regressor.fit(X_train, y_train)
##### 5.4: Use Metaheuristic-based FLNN model for classification problem
print(MhaFlnnClassifier.SUPPORTED_OPTIMIZERS)
print(MhaFlnnClassifier.SUPPORTED_CLS_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
classifier = MhaFlnnClassifier(hidden_size=10, act_name="elu", obj_name="KLDL", optimizer="BaseGA", optimizer_paras=opt_paras)
classifier.fit(X_train, y_train)
#### Step 6: Predicting a new result
y_pred = regressor.predict(X_test)
y_pred_cls = classifier.predict(X_test)
y_pred_label = le_y.inverse_transform(y_pred_cls)
#### Step 7: Calculate metrics using score or scores functions.
print("Try my AS metric with score function")
print(regressor.score(data.X_test, data.y_test, method="AS"))
print("Try my multiple metrics with scores function")
print(classifier.scores(data.X_test, data.y_test, list_methods=["AS", "PS", "F1S", "CEL", "BSL"]))
Utilities everything that Reflame provided:
### Step 1: Importing the libraries
from reflame import Data, FlnnRegressor, FlnnClassifier, MhaFlnnRegressor, MhaFlnnClassifier
from sklearn.datasets import load_digits
#### Step 2: Reading the dataset
X, y = load_digits(return_X_y=True)
data = Data(X, y)
#### Step 3: Next, split dataset into train and test set
data.split_train_test(test_size=0.2, shuffle=True, random_state=100)
#### Step 4: Feature Scaling
data.X_train, scaler_X = data.scale(data.X_train, scaling_methods=("minmax"))
data.X_test = scaler_X.transform(data.X_test)
data.y_train, scaler_y = data.encode_label(data.y_train) # This is for classification problem only
data.y_test = scaler_y.transform(data.y_test)
#### Step 5: Fitting FLNN-based model to the dataset
##### 5.1: Use standard FLNN model for regression problem
regressor = FlnnRegressor(expand_name="chebyshev", n_funcs=4, act_name="tanh",
obj_name="MSE", max_epochs=100, batch_size=32, optimizer="SGD", verbose=True)
regressor.fit(data.X_train, data.y_train)
##### 5.2: Use standard FLNN model for classification problem
classifer = FlnnClassifier(expand_name="chebyshev", n_funcs=4, act_name="tanh",
obj_name="BCEL", max_epochs=100, batch_size=32, optimizer="SGD", verbose=True)
classifer.fit(data.X_train, data.y_train)
##### 5.3: Use Metaheuristic-based FLNN model for regression problem
print(MhaFlnnClassifier.SUPPORTED_OPTIMIZERS)
print(MhaFlnnClassifier.SUPPORTED_REG_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
model = MhaFlnnRegressor(expand_name="chebyshev", n_funcs=3, act_name="elu",
obj_name="RMSE", optimizer="BaseGA", optimizer_paras=opt_paras, verbose=True)
regressor.fit(data.X_train, data.y_train)
##### 5.4: Use Metaheuristic-based FLNN model for classification problem
print(MhaFlnnClassifier.SUPPORTED_OPTIMIZERS)
print(MhaFlnnClassifier.SUPPORTED_CLS_OBJECTIVES)
opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30}
classifier = MhaFlnnClassifier(expand_name="chebyshev", n_funcs=4, act_name="sigmoid",
obj_name="NPV", optimizer="BaseGA", optimizer_paras=opt_paras, verbose=True)
classifier.fit(data.X_train, data.y_train)
#### Step 6: Predicting a new result
y_pred = regressor.predict(data.X_test)
y_pred_cls = classifier.predict(data.X_test)
y_pred_label = scaler_y.inverse_transform(y_pred_cls)
#### Step 7: Calculate metrics using score or scores functions.
print("Try my AS metric with score function")
print(regressor.score(data.X_test, data.y_test, method="AS"))
print("Try my multiple metrics with scores function")
print(classifier.scores(data.X_test, data.y_test, list_methods=["AS", "PS", "F1S", "CEL", "BSL"]))
A real-world dataset contains features that vary in magnitudes, units, and range. We would suggest performing normalization when the scale of a feature is irrelevant or misleading. Feature Scaling basically helps to normalize the data within a particular range.
reflame package¶
reflame.model package¶
reflame.model.mha_flnn module¶
- class reflame.model.mha_flnn.MhaFlnnClassifier(expand_name='chebyshev', n_funcs=4, act_name='none', obj_name=None, optimizer='BaseGA', optimizer_paras=None, verbose=False)[source]¶
Bases:
BaseMhaFlnn
,ClassifierMixin
Defines the general class of Metaheuristic-based FLNN model for Classification problems that inherit the BaseMhaFlnn and ClassifierMixin classes.
- Parameters:
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name (str, default='none') – Activation function for the hidden layer. The supported activation functions are: {“none”, “relu”, “prelu”, “gelu”, “elu”, “selu”, “rrelu”, “tanh”, “hard_tanh”, “sigmoid”, “hard_sigmoid”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”}
obj_name (str, default="AS") – Current supported objective functions, please check it here: https://github.com/thieu1995/permetrics
optimizer (str or instance of Optimizer class (from Mealpy library), default = "BaseGA") – The Metaheuristic Algorithm that use to solve the feature selection problem. Current supported list, please check it here: https://github.com/thieu1995/mealpy. If a custom optimizer is passed, make sure it is an instance of Optimizer class.
optimizer_paras (None or dict of parameter, default=None) – The parameter for the optimizer object. If None, the default parameters of optimizer is used (defined in https://github.com/thieu1995/mealpy.) If dict is passed, make sure it has at least epoch and pop_size parameters.
verbose (bool, default=False) – Whether to print progress messages to stdout.
[Optional] (obj_weights) – The objective weights for multiple objective functions
Examples
>>> from reflame import Data, MhaFlnnClassifier >>> from sklearn.datasets import make_classification >>> X, y = make_classification(n_samples=100, random_state=1) >>> data = Data(X, y) >>> data.split_train_test(test_size=0.2, random_state=1) >>> data.X_train_scaled, scaler = data.scale(data.X_train, method="MinMaxScaler") >>> data.X_test_scaled = scaler.transform(data.X_test) >>> opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30} >>> print(MhaFlnnClassifier.SUPPORTED_CLS_OBJECTIVES) {'PS': 'max', 'NPV': 'max', 'RS': 'max', ...., 'KLDL': 'min', 'BSL': 'min'} >>> model = MhaFlnnClassifier(expand_name="chebyshev", n_funcs=4, act_name="none", obj_name="BSL", optimizer="BaseGA", optimizer_paras=opt_paras) >>> model.fit(data.X_train_scaled, data.y_train) >>> pred = model.predict(data.X_test_scaled) >>> print(pred) array([1, 0, 1, 0, 1])
- CLS_OBJ_LOSSES = ['CEL', 'HL', 'KLDL', 'BSL']¶
- evaluate(y_true, y_pred, list_metrics=('AS', 'RS'))[source]¶
Return the list of performance metrics on the given test data and labels.
- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted values for X.
list_metrics (list, default=("AS", "RS")) – You can get metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- objective_function(solution=None)[source]¶
Evaluates the fitness function for classification metric
- Parameters:
solution (np.ndarray, default=None) –
- Returns:
result – The fitness value
- Return type:
float
- score(X, y, method='AS')[source]¶
Return the metric on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
method (str, default="AS") – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
result – The result of selected metric
- Return type:
float
- scores(X, y, list_methods=('AS', 'RS'))[source]¶
Return the list of metrics on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
list_methods (list, default=("AS", "RS")) – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- set_fit_request(*, lb: bool | None | str = '$UNCHANGED$', save_population: bool | None | str = '$UNCHANGED$', ub: bool | None | str = '$UNCHANGED$') MhaFlnnClassifier ¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
lb (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
lb
parameter infit
.save_population (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
save_population
parameter infit
.ub (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
ub
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, return_prob: bool | None | str = '$UNCHANGED$') MhaFlnnClassifier ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_prob (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_prob
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, method: bool | None | str = '$UNCHANGED$') MhaFlnnClassifier ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
method (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
method
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
- class reflame.model.mha_flnn.MhaFlnnRegressor(expand_name='chebyshev', n_funcs=4, act_name='none', obj_name='MSE', optimizer='BaseGA', optimizer_paras=None, verbose=False, obj_weights=None)[source]¶
Bases:
BaseMhaFlnn
,RegressorMixin
Defines the general class of Metaheuristic-based FLNN model for Regression problems that inherit the BaseMhaFlnn and RegressorMixin classes.
- Parameters:
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name (str, default='none') – Activation function for the hidden layer. The supported activation functions are: {“none”, “relu”, “prelu”, “gelu”, “elu”, “selu”, “rrelu”, “tanh”, “hard_tanh”, “sigmoid”, “hard_sigmoid”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”}
obj_name (str, default="MSE") – Current supported objective functions, please check it here: https://github.com/thieu1995/permetrics
optimizer (str or instance of Optimizer class (from Mealpy library), default = "BaseGA") – The Metaheuristic Algorithm that use to solve the feature selection problem. Current supported list, please check it here: https://github.com/thieu1995/mealpy. If a custom optimizer is passed, make sure it is an instance of Optimizer class.
optimizer_paras (None or dict of parameter, default=None) – The parameter for the optimizer object. If None, the default parameters of optimizer is used (defined in https://github.com/thieu1995/mealpy.) If dict is passed, make sure it has at least epoch and pop_size parameters.
verbose (bool, default=False) – Whether to print progress messages to stdout.
[Optional] (obj_weights) – The objective weights for multiple objective functions
Examples
>>> from reflame import MhaFlnnRegressor, Data >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_samples=200, random_state=1) >>> data = Data(X, y) >>> data.split_train_test(test_size=0.2, random_state=1) >>> data.X_train_scaled, scaler = data.scale(data.X_train, method="MinMaxScaler") >>> data.X_test_scaled = scaler.transform(data.X_test) >>> opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30} >>> model = MhaFlnnRegressor(expand_name="chebyshev", n_funcs=4, act_name="none", obj_name="RMSE", optimizer="BaseGA", optimizer_paras=opt_paras) >>> model.fit(data.X_train_scaled, data.y_train) >>> pred = model.predict(data.X_test_scaled) >>> print(pred)
- create_network(X, y)[source]¶
- Returns:
network (FLNN, an instance of FLNN network)
obj_scaler (ObjectiveScaler, the objective scaler that used to scale output)
- evaluate(y_true, y_pred, list_metrics=('MSE', 'MAE'))[source]¶
Return the list of performance metrics of the prediction.
- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted values for X.
list_metrics (list, default=("MSE", "MAE")) – You can get metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- objective_function(solution=None)[source]¶
Evaluates the fitness function for regression metric
- Parameters:
solution (np.ndarray, default=None) –
- Returns:
result – The fitness value
- Return type:
float
- score(X, y, method='RMSE')[source]¶
Return the metric of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
method (str, default="RMSE") – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
result – The result of selected metric
- Return type:
float
- scores(X, y, list_methods=('MSE', 'MAE'))[source]¶
Return the list of metrics of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
list_methods (list, default=("MSE", "MAE")) – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- set_fit_request(*, lb: bool | None | str = '$UNCHANGED$', save_population: bool | None | str = '$UNCHANGED$', ub: bool | None | str = '$UNCHANGED$') MhaFlnnRegressor ¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
lb (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
lb
parameter infit
.save_population (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
save_population
parameter infit
.ub (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
ub
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, return_prob: bool | None | str = '$UNCHANGED$') MhaFlnnRegressor ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_prob (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_prob
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, method: bool | None | str = '$UNCHANGED$') MhaFlnnRegressor ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
method (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
method
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
reflame.model.standard_flnn module¶
- class reflame.model.standard_flnn.FlnnClassifier(expand_name='chebyshev', n_funcs=4, act_name='none', obj_name='NLLL', max_epochs=1000, batch_size=32, optimizer='SGD', optimizer_paras=None, verbose=False, **kwargs)[source]¶
Bases:
BaseFlnn
Defines the class for traditional FLNN network for Classification problems that inherit the BaseFlnn class
- Parameters:
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name ({"none", "relu", "leaky_relu", "celu", "prelu", "gelu", "elu", "selu", "rrelu", "tanh", "hard_tanh",) – “sigmoid”, “hard_sigmoid”, “log_sigmoid”, “silu”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”, “softmin”, “softmax”, “log_softmax” }, default=’none’ Activation function for the hidden layer.
obj_name (str, default=NLLL) – The name of objective for classification problem (binary and multi-class classification)
max_epochs (int, default=1000) – Maximum number of epochs / iterations / generations
batch_size (int, default=32) – The batch size
optimizer (str, default = "SGD") – The gradient-based optimizer from Pytorch. List of supported optimizer is: [“Adadelta”, “Adagrad”, “Adam”, “Adamax”, “AdamW”, “ASGD”, “LBFGS”, “NAdam”, “RAdam”, “RMSprop”, “Rprop”, “SGD”]
optimizer_paras (dict or None, default=None) – The dictionary parameters of the selected optimizer.
verbose (bool, default=True) – Whether to print progress messages to stdout.
Examples
>>> from reflame import FlnnClassifier, Data >>> from sklearn.datasets import make_regression >>> >>> ## Make dataset >>> X, y = make_regression(n_samples=200, n_features=10, random_state=1) >>> ## Load data object >>> data = Data(X, y) >>> ## Split train and test >>> data.split_train_test(test_size=0.2, random_state=1, inplace=True) >>> ## Scale dataset >>> data.X_train, scaler = data.scale(data.X_train, scaling_methods=("minmax")) >>> data.X_test = scaler.transform(data.X_test) >>> ## Create model >>> model = FlnnClassifier(expand_name="chebyshev", n_funcs=4, act_name="none", >>> obj_name="CEL", max_epochs=100, batch_size=32, optimizer="SGD", verbose=True) >>> ## Train the model >>> model.fit(data.X_train, data.y_train) >>> ## Test the model >>> y_pred = model.predict(data.X_test) >>> ## Calculate some metrics >>> print(model.score(X=data.X_test, y=data.y_test, method="RMSE")) >>> print(model.scores(X=data.X_test, y=data.y_test, list_methods=["R2", "NSE", "MAPE"])) >>> print(model.evaluate(y_true=data.y_test, y_pred=y_pred, list_metrics=["R2", "NSE", "MAPE", "NNSE"]))
- CLS_OBJ_BINARY_1 = ['PNLLL', 'HEL', 'BCEL', 'CEL', 'BCELL']¶
- CLS_OBJ_BINARY_2 = ['NLLL']¶
- CLS_OBJ_LOSSES = ['CEL', 'HEL', 'KLDL']¶
- CLS_OBJ_MULTI = ['NLLL', 'CEL']¶
- SUPPORTED_LOSSES = {'BCEL': <class 'torch.nn.modules.loss.BCELoss'>, 'BCELL': <class 'torch.nn.modules.loss.BCEWithLogitsLoss'>, 'CEL': <class 'torch.nn.modules.loss.CrossEntropyLoss'>, 'GNLLL': <class 'torch.nn.modules.loss.GaussianNLLLoss'>, 'HEL': <class 'torch.nn.modules.loss.HingeEmbeddingLoss'>, 'KLDL': <class 'torch.nn.modules.loss.KLDivLoss'>, 'NLLL': <class 'torch.nn.modules.loss.NLLLoss'>, 'PNLLL': <class 'torch.nn.modules.loss.PoissonNLLLoss'>}¶
- create_network(X, y) Tuple[NeuralNetClassifier, ObjectiveScaler] [source]¶
- Returns:
network (FLNN, an instance of FLNN network)
obj_scaler (ObjectiveScaler, the objective scaler that used to scale output)
- evaluate(y_true, y_pred, list_metrics=('AS', 'RS'))[source]¶
Return the list of performance metrics on the given test data and labels.
- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted values for X.
list_metrics (list, default=("AS", "RS")) – You can get metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- score(X, y, method='AS')[source]¶
Return the metric on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
method (str, default="AS") – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
result – The result of selected metric
- Return type:
float
- scores(X, y, list_methods=('AS', 'RS'))[source]¶
Return the list of metrics on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
list_methods (list, default=("AS", "RS")) – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- set_predict_request(*, return_prob: bool | None | str = '$UNCHANGED$') FlnnClassifier ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_prob (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_prob
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, method: bool | None | str = '$UNCHANGED$') FlnnClassifier ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
method (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
method
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
- class reflame.model.standard_flnn.FlnnRegressor(expand_name='chebyshev', n_funcs=4, act_name='none', obj_name='MSE', max_epochs=1000, batch_size=32, optimizer='SGD', optimizer_paras=None, verbose=False, **kwargs)[source]¶
Bases:
BaseFlnn
Defines the class for traditional FLNN network for Regression problems that inherit the BaseFlnn and RegressorMixin classes.
- Parameters:
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name ({"none", "relu", "leaky_relu", "celu", "prelu", "gelu", "elu", "selu", "rrelu", "tanh", "hard_tanh", "sigmoid",) – “hard_sigmoid”, “log_sigmoid”, “silu”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”, “softmin”, “softmax”, “log_softmax” }, default=’none’ Activation function for the hidden layer.
obj_name (str, default=None) – The name of objective for the problem, also depend on the problem is classification and regression.
max_epochs (int, default=1000) – Maximum number of epochs / iterations / generations
batch_size (int, default=32) – The batch size
optimizer (str, default = "SGD") – The gradient-based optimizer from Pytorch. List of supported optimizer is: [“Adadelta”, “Adagrad”, “Adam”, “Adamax”, “AdamW”, “ASGD”, “LBFGS”, “NAdam”, “RAdam”, “RMSprop”, “Rprop”, “SGD”]
optimizer_paras (dict or None, default=None) – The dictionary parameters of the selected optimizer.
verbose (bool, default=True) – Whether to print progress messages to stdout.
Examples
>>> from reflame import FlnnRegressor, Data >>> from sklearn.datasets import make_regression >>> >>> ## Make dataset >>> X, y = make_regression(n_samples=200, n_features=10, random_state=1) >>> ## Load data object >>> data = Data(X, y) >>> ## Split train and test >>> data.split_train_test(test_size=0.2, random_state=1, inplace=True) >>> ## Scale dataset >>> data.X_train, scaler = data.scale(data.X_train, scaling_methods=("minmax")) >>> data.X_test = scaler.transform(data.X_test) >>> ## Create model >>> model = FlnnRegressor(expand_name="chebyshev", n_funcs=4, act_name="none", >>> obj_name="MSE", max_epochs=100, batch_size=32, optimizer="SGD", verbose=True) >>> ## Train the model >>> model.fit(data.X_train, data.y_train) >>> ## Test the model >>> y_pred = model.predict(data.X_test) >>> ## Calculate some metrics >>> print(model.score(X=data.X_test, y=data.y_test, method="RMSE")) >>> print(model.scores(X=data.X_test, y=data.y_test, list_methods=["R2", "NSE", "MAPE"])) >>> print(model.evaluate(y_true=data.y_test, y_pred=y_pred, list_metrics=["R2", "NSE", "MAPE", "NNSE"]))
- SUPPORTED_LOSSES = {'MAE': <class 'torch.nn.modules.loss.L1Loss'>, 'MSE': <class 'torch.nn.modules.loss.MSELoss'>}¶
- create_network(X, y)[source]¶
- Returns:
network (FLNN, an instance of FLNN network)
obj_scaler (ObjectiveScaler, the objective scaler that used to scale output)
- evaluate(y_true, y_pred, list_metrics=('MSE', 'MAE'))[source]¶
Return the list of performance metrics of the prediction.
- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted values for X.
list_metrics (list, default=("MSE", "MAE")) – You can get metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- score(X, y, method='RMSE')[source]¶
Return the metric of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
method (str, default="RMSE") – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
result – The result of selected metric
- Return type:
float
- scores(X, y, list_methods=('MSE', 'MAE'))[source]¶
Return the list of metrics of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
list_methods (list, default=("MSE", "MAE")) – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- set_predict_request(*, return_prob: bool | None | str = '$UNCHANGED$') FlnnRegressor ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_prob (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_prob
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, method: bool | None | str = '$UNCHANGED$') FlnnRegressor ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
method (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
method
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
reflame.utils package¶
reflame.utils.activation module¶
- reflame.utils.activation.silu(x)¶
reflame.utils.data_toolkit module¶
- class reflame.utils.data_toolkit.BoxCoxScaler(lmbda=None)[source]¶
Bases:
BaseEstimator
,TransformerMixin
- class reflame.utils.data_toolkit.Data(X=None, y=None, name='Unknown')[source]¶
Bases:
object
The structure of our supported Data class
- Parameters:
X (np.ndarray) – The features of your data
y (np.ndarray) – The labels of your data
- SUPPORT = {'scaler': ['standard', 'minmax', 'max-abs', 'log1p', 'loge', 'sqrt', 'sinh-arc-sinh', 'robust', 'box-cox', 'yeo-johnson']}¶
- class reflame.utils.data_toolkit.DataTransformer(scaling_methods=('standard',), list_dict_paras=None)[source]¶
Bases:
BaseEstimator
,TransformerMixin
- SUPPORTED_SCALERS = {'box-cox': <class 'reflame.utils.data_toolkit.BoxCoxScaler'>, 'log1p': <class 'reflame.utils.data_toolkit.Log1pScaler'>, 'loge': <class 'reflame.utils.data_toolkit.LogeScaler'>, 'max-abs': <class 'sklearn.preprocessing._data.MaxAbsScaler'>, 'minmax': <class 'sklearn.preprocessing._data.MinMaxScaler'>, 'robust': <class 'sklearn.preprocessing._data.RobustScaler'>, 'sinh-arc-sinh': <class 'reflame.utils.data_toolkit.SinhArcSinhScaler'>, 'sqrt': <class 'reflame.utils.data_toolkit.SqrtScaler'>, 'standard': <class 'sklearn.preprocessing._data.StandardScaler'>, 'yeo-johnson': <class 'reflame.utils.data_toolkit.YeoJohnsonScaler'>}¶
- class reflame.utils.data_toolkit.FeatureEngineering[source]¶
Bases:
object
- create_threshold_binary_features(X, threshold)[source]¶
Perform feature engineering to add binary indicator columns for values below the threshold. Add each new column right after the corresponding original column.
Args: X (numpy.ndarray): The input 2D matrix of shape (n_samples, n_features). threshold (float): The threshold value for identifying low values.
Returns: numpy.ndarray: The updated 2D matrix with binary indicator columns.
- class reflame.utils.data_toolkit.LabelEncoder[source]¶
Bases:
object
Encode categorical features as integer labels.
- fit(y)[source]¶
Fit label encoder to a given set of labels.
Parameters:¶
- yarray-like
Labels to encode.
- fit_transform(y)[source]¶
Fit label encoder and return encoded labels.
- Parameters:
y (array-like of shape (n_samples,)) – Target values.
- Returns:
y – Encoded labels.
- Return type:
array-like of shape (n_samples,)
- class reflame.utils.data_toolkit.ObjectiveScaler(obj_name='sigmoid', ohe_scaler=None)[source]¶
Bases:
object
For label scaler in classification (binary and multiple classification)
- class reflame.utils.data_toolkit.SinhArcSinhScaler(epsilon=0.1, delta=1.0)[source]¶
Bases:
BaseEstimator
,TransformerMixin
reflame.utils.evaluator module¶
reflame.utils.expand_util module¶
reflame.utils.validator module¶
Submodules¶
reflame.base_flnn module¶
- class reflame.base_flnn.BaseFlnn(expand_name='chebyshev', n_funcs=4, act_name='none')[source]¶
Bases:
BaseEstimator
Defines the most general class for FLNN network that inherits the BaseEstimator class of Scikit-Learn library.
- Parameters:
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name (str, default='none') – Activation function for the hidden layer. The supported activation functions are: {“none”, “relu”, “prelu”, “gelu”, “elu”, “selu”, “rrelu”, “tanh”, “hard_tanh”, “sigmoid”, “hard_sigmoid”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”}
- CLS_OBJ_LOSSES = None¶
- SUPPORTED_CLS_METRICS = {'AS': 'max', 'BSL': 'min', 'CEL': 'min', 'CKS': 'max', 'F1S': 'max', 'F2S': 'max', 'FBS': 'max', 'GINI': 'min', 'GMS': 'max', 'HL': 'min', 'HS': 'max', 'JSI': 'max', 'KLDL': 'min', 'LS': 'max', 'MCC': 'max', 'NPV': 'max', 'PS': 'max', 'ROC-AUC': 'max', 'RS': 'max', 'SS': 'max'}¶
- SUPPORTED_REG_METRICS = {'A10': 'max', 'A20': 'max', 'A30': 'max', 'ACOD': 'max', 'APCC': 'max', 'AR': 'max', 'AR2': 'max', 'CI': 'max', 'COD': 'max', 'COR': 'max', 'COV': 'max', 'CRM': 'min', 'DRV': 'min', 'EC': 'max', 'EVS': 'max', 'GINI': 'min', 'GINI_WIKI': 'min', 'JSD': 'min', 'KGE': 'max', 'MAAPE': 'min', 'MAE': 'min', 'MAPE': 'min', 'MASE': 'min', 'ME': 'min', 'MRB': 'min', 'MRE': 'min', 'MSE': 'min', 'MSLE': 'min', 'MedAE': 'min', 'NNSE': 'max', 'NRMSE': 'min', 'NSE': 'max', 'OI': 'max', 'PCC': 'max', 'PCD': 'max', 'R': 'max', 'R2': 'max', 'R2S': 'max', 'RAE': 'min', 'RMSE': 'min', 'RSE': 'min', 'RSQ': 'max', 'SMAPE': 'min', 'VAF': 'max', 'WI': 'max'}¶
- evaluate(y_true, y_pred, list_metrics=None)[source]¶
Return the list of performance metrics of the prediction.
- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted values for X.
list_metrics (list) – You can get metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- predict(X, return_prob=False)[source]¶
Inherit the predict function from BaseFlnn class, with 1 more parameter return_prob.
- Parameters:
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
return_prob (bool, default=False) –
It is used for classification problem:
If True, the returned results are the probability for each sample
If False, the returned results are the predicted labels
- save_loss_train(save_path='history', filename='loss.csv')[source]¶
Save the loss (convergence) during the training process to csv file.
- Parameters:
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".csv" extension) –
- save_metrics(y_true, y_pred, list_metrics=('RMSE', 'MAE'), save_path='history', filename='metrics.csv')[source]¶
Save evaluation metrics to csv file
- Parameters:
y_true (ground truth data) –
y_pred (predicted output) –
list_metrics (list of evaluation metrics) –
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".csv" extension) –
- save_model(save_path='history', filename='model.pkl')[source]¶
Save model to pickle file
- Parameters:
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".pkl" extension) –
- save_y_predicted(X, y_true, save_path='history', filename='y_predicted.csv')[source]¶
Save the predicted results to csv file
- Parameters:
X (The features data, nd.ndarray) –
y_true (The ground truth data) –
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".csv" extension) –
- score(X, y, method=None)[source]¶
Return the metric of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
method (str, default="RMSE") – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
result – The result of selected metric
- Return type:
float
- scores(X, y, list_methods=None)[source]¶
Return the list of metrics of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
list_methods (list, default=("MSE", "MAE")) – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- set_predict_request(*, return_prob: bool | None | str = '$UNCHANGED$') BaseFlnn ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_prob (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_prob
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, method: bool | None | str = '$UNCHANGED$') BaseFlnn ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
method (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
method
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
- class reflame.base_flnn.BaseMhaFlnn(expand_name='chebyshev', n_funcs=4, act_name='none', obj_name=None, optimizer='BaseGA', optimizer_paras=None, verbose=True)[source]¶
Bases:
BaseFlnn
Defines the most general class for Metaheuristic-based FLNN model that inherits the BaseFlnn class
- Parameters:
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name (str, default='none') – Activation function for the hidden layer. The supported activation functions are: {“none”, “relu”, “prelu”, “gelu”, “elu”, “selu”, “rrelu”, “tanh”, “hard_tanh”, “sigmoid”, “hard_sigmoid”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”}
obj_name (None or str, default=None) – The name of objective for the problem, also depend on the problem is classification and regression.
optimizer (str or instance of Optimizer class (from Mealpy library), default = "BaseGA") – The Metaheuristic Algorithm that use to solve the feature selection problem. Current supported list, please check it here: https://github.com/thieu1995/mealpy. If a custom optimizer is passed, make sure it is an instance of Optimizer class.
optimizer_paras (None or dict of parameter, default=None) – The parameter for the optimizer object. If None, the default parameters of optimizer is used (defined in https://github.com/thieu1995/mealpy.) If dict is passed, make sure it has at least epoch and pop_size parameters.
verbose (bool, default=True) – Whether to print progress messages to stdout.
- SUPPORTED_CLS_OBJECTIVES = {'AS': 'max', 'BSL': 'min', 'CEL': 'min', 'CKS': 'max', 'F1S': 'max', 'F2S': 'max', 'FBS': 'max', 'GINI': 'min', 'GMS': 'max', 'HL': 'min', 'HS': 'max', 'JSI': 'max', 'KLDL': 'min', 'LS': 'max', 'MCC': 'max', 'NPV': 'max', 'PS': 'max', 'ROC-AUC': 'max', 'RS': 'max', 'SS': 'max'}¶
- SUPPORTED_OPTIMIZERS = ['OriginalABC', 'OriginalACOR', 'AugmentedAEO', 'EnhancedAEO', 'ImprovedAEO', 'ModifiedAEO', 'OriginalAEO', 'MGTO', 'OriginalAGTO', 'DevALO', 'OriginalALO', 'OriginalAO', 'OriginalAOA', 'IARO', 'LARO', 'OriginalARO', 'OriginalASO', 'OriginalAVOA', 'OriginalArchOA', 'AdaptiveBA', 'DevBA', 'OriginalBA', 'DevBBO', 'OriginalBBO', 'OriginalBBOA', 'OriginalBES', 'ABFO', 'OriginalBFO', 'OriginalBMO', 'DevBRO', 'OriginalBRO', 'OriginalBSA', 'ImprovedBSO', 'OriginalBSO', 'CleverBookBeesA', 'OriginalBeesA', 'ProbBeesA', 'OriginalCA', 'OriginalCDO', 'OriginalCEM', 'OriginalCGO', 'DevCHIO', 'OriginalCHIO', 'OriginalCOA', 'OCRO', 'OriginalCRO', 'OriginalCSA', 'OriginalCSO', 'OriginalCircleSA', 'OriginalCoatiOA', 'JADE', 'OriginalDE', 'SADE', 'SAP_DE', 'DevDMOA', 'OriginalDMOA', 'OriginalDO', 'DevEFO', 'OriginalEFO', 'OriginalEHO', 'AdaptiveEO', 'ModifiedEO', 'OriginalEO', 'OriginalEOA', 'LevyEP', 'OriginalEP', 'CMA_ES', 'LevyES', 'OriginalES', 'Simple_CMA_ES', 'OriginalESOA', 'OriginalEVO', 'OriginalFA', 'DevFBIO', 'OriginalFBIO', 'OriginalFFA', 'OriginalFFO', 'OriginalFLA', 'DevFOA', 'OriginalFOA', 'WhaleFOA', 'OriginalFOX', 'OriginalFPA', 'BaseGA', 'EliteMultiGA', 'EliteSingleGA', 'MultiGA', 'SingleGA', 'OriginalGBO', 'DevGCO', 'OriginalGCO', 'OriginalGJO', 'OriginalGOA', 'DevGSKA', 'OriginalGSKA', 'Matlab101GTO', 'Matlab102GTO', 'OriginalGTO', 'GWO_WOA', 'IGWO', 'OriginalGWO', 'RW_GWO', 'OriginalHBA', 'OriginalHBO', 'OriginalHC', 'SwarmHC', 'OriginalHCO', 'OriginalHGS', 'OriginalHGSO', 'OriginalHHO', 'DevHS', 'OriginalHS', 'OriginalICA', 'OriginalINFO', 'OriginalIWO', 'DevJA', 'LevyJA', 'OriginalJA', 'DevLCO', 'ImprovedLCO', 'OriginalLCO', 'OriginalMA', 'OriginalMFO', 'OriginalMGO', 'OriginalMPA', 'OriginalMRFO', 'WMQIMRFO', 'OriginalMSA', 'DevMVO', 'OriginalMVO', 'OriginalNGO', 'ImprovedNMRA', 'OriginalNMRA', 'OriginalNRO', 'OriginalOOA', 'OriginalPFA', 'OriginalPOA', 'AIW_PSO', 'CL_PSO', 'C_PSO', 'HPSO_TVAC', 'LDW_PSO', 'OriginalPSO', 'P_PSO', 'OriginalPSS', 'DevQSA', 'ImprovedQSA', 'LevyQSA', 'OppoQSA', 'OriginalQSA', 'OriginalRIME', 'OriginalRUN', 'GaussianSA', 'OriginalSA', 'SwarmSA', 'DevSARO', 'OriginalSARO', 'DevSBO', 'OriginalSBO', 'DevSCA', 'OriginalSCA', 'QleSCA', 'OriginalSCSO', 'ImprovedSFO', 'OriginalSFO', 'L_SHADE', 'OriginalSHADE', 'OriginalSHIO', 'OriginalSHO', 'ImprovedSLO', 'ModifiedSLO', 'OriginalSLO', 'DevSMA', 'OriginalSMA', 'DevSOA', 'OriginalSOA', 'OriginalSOS', 'DevSPBO', 'OriginalSPBO', 'OriginalSRSR', 'DevSSA', 'OriginalSSA', 'OriginalSSDO', 'OriginalSSO', 'OriginalSSpiderA', 'OriginalSSpiderO', 'OriginalSTO', 'OriginalSeaHO', 'OriginalServalOA', 'OriginalTDO', 'DevTLO', 'ImprovedTLO', 'OriginalTLO', 'OriginalTOA', 'DevTPO', 'OriginalTS', 'OriginalTSA', 'OriginalTSO', 'EnhancedTWO', 'LevyTWO', 'OppoTWO', 'OriginalTWO', 'DevVCS', 'OriginalVCS', 'OriginalWCA', 'OriginalWDO', 'OriginalWHO', 'HI_WOA', 'OriginalWOA', 'OriginalWaOA', 'OriginalWarSO', 'OriginalZOA']¶
- SUPPORTED_REG_OBJECTIVES = {'A10': 'max', 'A20': 'max', 'A30': 'max', 'ACOD': 'max', 'APCC': 'max', 'AR': 'max', 'AR2': 'max', 'CI': 'max', 'COD': 'max', 'COR': 'max', 'COV': 'max', 'CRM': 'min', 'DRV': 'min', 'EC': 'max', 'EVS': 'max', 'GINI': 'min', 'GINI_WIKI': 'min', 'JSD': 'min', 'KGE': 'max', 'MAAPE': 'min', 'MAE': 'min', 'MAPE': 'min', 'MASE': 'min', 'ME': 'min', 'MRB': 'min', 'MRE': 'min', 'MSE': 'min', 'MSLE': 'min', 'MedAE': 'min', 'NNSE': 'max', 'NRMSE': 'min', 'NSE': 'max', 'OI': 'max', 'PCC': 'max', 'PCD': 'max', 'R': 'max', 'R2': 'max', 'R2S': 'max', 'RAE': 'min', 'RMSE': 'min', 'RSE': 'min', 'RSQ': 'max', 'SMAPE': 'min', 'VAF': 'max', 'WI': 'max'}¶
- set_fit_request(*, lb: bool | None | str = '$UNCHANGED$', save_population: bool | None | str = '$UNCHANGED$', ub: bool | None | str = '$UNCHANGED$') BaseMhaFlnn ¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
lb (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
lb
parameter infit
.save_population (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
save_population
parameter infit
.ub (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
ub
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, return_prob: bool | None | str = '$UNCHANGED$') BaseMhaFlnn ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_prob (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_prob
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, method: bool | None | str = '$UNCHANGED$') BaseMhaFlnn ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
method (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
method
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
- class reflame.base_flnn.FLNN(size_input=5, size_output=1, expand_name='chebyshev', n_funcs=4, act_name='elu')[source]¶
Bases:
object
This class defines the general Functional Link Neural Network (FLNN) model
- Parameters:
size_input (int, default=5) – The number of input features
size_output (int, default=1) – The number of output labels
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name (str, default='none') – Activation function for the hidden layer. The supported activation functions are: {“none”, “relu”, “prelu”, “gelu”, “elu”, “selu”, “rrelu”, “tanh”, “hard_tanh”, “sigmoid”, “hard_sigmoid”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”}
- fit(X, y)[source]¶
Fit the model to data matrix X and target(s) y.
- Parameters:
X (ndarray or sparse matrix of shape (n_samples, n_features)) – The input data.
y (ndarray of shape (n_samples,) or (n_samples, n_outputs)) – The target values (class labels in classification, real numbers in regression).
- Returns:
self – Returns a trained FLNN model.
- Return type:
object
reflame.base_flnn_torch module¶
- class reflame.base_flnn_torch.BaseFlnn(expand_name='chebyshev', n_funcs=4, act_name='none', obj_name=None, max_epochs=1000, batch_size=32, optimizer='SGD', optimizer_paras=None, verbose=False)[source]¶
Bases:
BaseEstimator
Defines the most general class for FLNN network that inherits the BaseEstimator class of Scikit-Learn library.
- Parameters:
expand_name (str, default="chebyshev") – The expand function that will be used. The supported expand functions are: {“chebyshev”, “legendre”, “gegenbauer”, “laguerre”, “hermite”, “power”, “trigonometric”}
n_funcs (int, default=4) – The first n_funcs in expand functions list will be used. Valid value from 1 to 10.
act_name ({"none", "relu", "leaky_relu", "celu", "prelu", "gelu", "elu", "selu", "rrelu", "tanh", "hard_tanh",) – “sigmoid”, “hard_sigmoid”, “log_sigmoid”, “silu”, “swish”, “hard_swish”, “soft_plus”, “mish”, “soft_sign”, “tanh_shrink”, “soft_shrink”, “hard_shrink”, “softmin”, “softmax”, “log_softmax” }, default=’none’ Activation function for the hidden layer.
obj_name (str, default=None) – The name of objective for the problem, also depend on the problem is classification and regression.
max_epochs (int, default=1000) – Maximum number of epochs / iterations / generations
batch_size (int, default=32) – The batch size
optimizer (str, default = "SGD") – The gradient-based optimizer from Pytorch. List of supported optimizer is: [“Adadelta”, “Adagrad”, “Adam”, “Adamax”, “AdamW”, “ASGD”, “LBFGS”, “NAdam”, “RAdam”, “RMSprop”, “Rprop”, “SGD”]
optimizer_paras (dict or None, default=None) – The dictionary parameters of the selected optimizer.
verbose (bool, default=True) – Whether to print progress messages to stdout.
- CLS_OBJ_LOSSES = None¶
- SUPPORTED_CLS_METRICS = {'AS': 'max', 'BSL': 'min', 'CEL': 'min', 'CKS': 'max', 'F1S': 'max', 'F2S': 'max', 'FBS': 'max', 'GINI': 'min', 'GMS': 'max', 'HL': 'min', 'HS': 'max', 'JSI': 'max', 'KLDL': 'min', 'LS': 'max', 'MCC': 'max', 'NPV': 'max', 'PS': 'max', 'ROC-AUC': 'max', 'RS': 'max', 'SS': 'max'}¶
- SUPPORTED_LOSSES = {'MAE': <class 'torch.nn.modules.loss.L1Loss'>, 'MSE': <class 'torch.nn.modules.loss.MSELoss'>}¶
- SUPPORTED_OPTIMIZERS = ['Adadelta', 'Adagrad', 'Adam', 'Adamax', 'AdamW', 'ASGD', 'LBFGS', 'NAdam', 'RAdam', 'RMSprop', 'Rprop', 'SGD']¶
- SUPPORTED_REG_METRICS = {'A10': 'max', 'A20': 'max', 'A30': 'max', 'ACOD': 'max', 'APCC': 'max', 'AR': 'max', 'AR2': 'max', 'CI': 'max', 'COD': 'max', 'COR': 'max', 'COV': 'max', 'CRM': 'min', 'DRV': 'min', 'EC': 'max', 'EVS': 'max', 'GINI': 'min', 'GINI_WIKI': 'min', 'JSD': 'min', 'KGE': 'max', 'MAAPE': 'min', 'MAE': 'min', 'MAPE': 'min', 'MASE': 'min', 'ME': 'min', 'MRB': 'min', 'MRE': 'min', 'MSE': 'min', 'MSLE': 'min', 'MedAE': 'min', 'NNSE': 'max', 'NRMSE': 'min', 'NSE': 'max', 'OI': 'max', 'PCC': 'max', 'PCD': 'max', 'R': 'max', 'R2': 'max', 'R2S': 'max', 'RAE': 'min', 'RMSE': 'min', 'RSE': 'min', 'RSQ': 'max', 'SMAPE': 'min', 'VAF': 'max', 'WI': 'max'}¶
- evaluate(y_true, y_pred, list_metrics=None)[source]¶
Return the list of performance metrics of the prediction.
- Parameters:
y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted values for X.
list_metrics (list) – You can get metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- predict(X, return_prob=False)[source]¶
Inherit the predict function from BaseFlnn class, with 1 more parameter return_prob.
- Parameters:
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
return_prob (bool, default=False) –
It is used for classification problem:
If True, the returned results are the probability for each sample
If False, the returned results are the predicted labels
- save_loss_train(save_path='history', filename='loss.csv')[source]¶
Save the loss (convergence) during the training process to csv file.
- Parameters:
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".csv" extension) –
- save_metrics(y_true, y_pred, list_metrics=('RMSE', 'MAE'), save_path='history', filename='metrics.csv')[source]¶
Save evaluation metrics to csv file
- Parameters:
y_true (ground truth data) –
y_pred (predicted output) –
list_metrics (list of evaluation metrics) –
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".csv" extension) –
- save_model(save_path='history', filename='model.pkl')[source]¶
Save model to pickle file
- Parameters:
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".pkl" extension) –
- save_y_predicted(X, y_true, save_path='history', filename='y_predicted.csv')[source]¶
Save the predicted results to csv file
- Parameters:
X (The features data, nd.ndarray) –
y_true (The ground truth data) –
save_path (saved path (relative path, consider from current executed script path)) –
filename (name of the file, needs to have ".csv" extension) –
- score(X, y, method=None)[source]¶
Return the metric of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
method (str, default="RMSE") – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
result – The result of selected metric
- Return type:
float
- scores(X, y, list_methods=None)[source]¶
Return the list of metrics of the prediction.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
list_methods (list, default=("MSE", "MAE")) – You can get all metrics from Permetrics library: https://github.com/thieu1995/permetrics
- Returns:
results – The results of the list metrics
- Return type:
dict
- set_predict_request(*, return_prob: bool | None | str = '$UNCHANGED$') BaseFlnn ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_prob (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_prob
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, method: bool | None | str = '$UNCHANGED$') BaseFlnn ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
method (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
method
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
- class reflame.base_flnn_torch.FLNN(size_input=10, size_output=1, expand_name='chebyshev', n_funcs=4, act_name='none')[source]¶
Bases:
Module
- SUPPORTED_ACTIVATIONS = ['none', 'threshold', 'relu', 'rrelu', 'hardtanh', 'relu6', 'sigmoid', 'hardsigmoid', 'tanh', 'silu', 'mish', 'hardswish', 'elu', 'celu', 'selu', 'glu', 'gelu', 'hardshrink', 'leakyrelu', 'logsigmoid', 'softplus', 'softshrink', 'multiheadattention', 'prelu', 'softsign', 'tanhshrink', 'softmin', 'softmax', 'logsoftmax']¶
- SUPPORTED_EXPANDS = ['chebyshev', 'legendre', 'gegenbauer', 'laguerre', 'hermite', 'power', 'trigonometric']¶
- SUPPORTED_N_FUNCS = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]¶
- forward(x)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- training: bool¶
Citation Request¶
Note:
If you want to understand how Metaheuristic is applied to Functional Link Neural Network, you need to read the paper
titled "A resource usage prediction system using functional-link and genetic algorithm neural network for multivariate cloud metrics".
The paper can be accessed at the following `this link <https://doi.org/10.1016/j.procs.2020.03.063>`_
Please include these citations if you plan to use this library:
@software{nguyen_van_thieu_2023_8249046,
author = {Nguyen Van Thieu},
title = {Revolutionizing Functional Link Neural Network by Metaheuristic Algorithms: reflame - A Python Library},
month = 11,
year = 2023,
publisher = {Zenodo},
doi = {10.5281/zenodo.8249045},
url = {https://github.com/thieu1995/reflame}
}
@article{van2023mealpy,
title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
author={Van Thieu, Nguyen and Mirjalili, Seyedali},
journal={Journal of Systems Architecture},
year={2023},
publisher={Elsevier},
doi={10.1016/j.sysarc.2023.102871}
}
@inproceedings{nguyen2019building,
author = {Thieu Nguyen and Binh Minh Nguyen and Giang Nguyen},
booktitle = {International Conference on Theory and Applications of Models of Computation},
organization = {Springer},
pages = {501--517},
title = {Building Resource Auto-scaler with Functional-Link Neural Network and Adaptive Bacterial Foraging Optimization},
year = {2019},
url={https://doi.org/10.1007/978-3-030-14812-6_31},
doi={10.1007/978-3-030-14812-6_31}
}
@inproceedings{nguyen2018resource,
author = {Thieu Nguyen and Nhuan Tran and Binh Minh Nguyen and Giang Nguyen},
booktitle = {2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA)},
organization = {IEEE},
pages = {49--56},
title = {A Resource Usage Prediction System Using Functional-Link and Genetic Algorithm Neural Network for Multivariate Cloud Metrics},
year = {2018},
url={https://doi.org/10.1109/SOCA.2018.00014},
doi={10.1109/SOCA.2018.00014}
}
If you have an open-ended or a research question, you can contact me via nguyenthieu2102@gmail.com
Important links¶
Official source code repo: https://github.com/thieu1995/reflame
Official document: https://reflame.readthedocs.io/
Download releases: https://pypi.org/project/reflame/
Issue tracker: https://github.com/thieu1995/reflame/issues
Notable changes log: https://github.com/thieu1995/reflame/blob/master/ChangeLog.md
- This project also related to our another projects which are “optimization” and “machine learning”, check it here:
License¶
The project is licensed under GNU General Public License (GPL) V3 license.